
ATC // AVX MOS Single Layer Capacitors

Metal Oxide Semiconductor

ATC//AVX Thin Film Technologies offers semi-custom thin film Metal Oxide Semiconductor (MOS) Single Layer Capacitors suitable for RF/ microwave and millimeter-wave applications. The silicon oxide dielectric is fabricated with high temperature processing resulting in excellent uniformity and stability.

ATC//AVX Thin Film Technologies' unique processing and materials sets result in MOS capacitors with high Q, excellent temperature stability, high dielectric strength, high insulation resistance and low ESR. A wide range of termination metallizations are available to facilitate epoxy, solder die attach, thermosonic and ultrasonic bonding and gold or aluminum wire bonding. Custom applications and designs are welcome. Consult factory for additional information.

Benefits

- Rectangular sizes up to several mm in length (100's mils)
- Square sizes from 254μm x 254μm (10 mils)
- Thicknesses from 50 to 250 µm (2 to 10 mils)
- DC to GHz operation
- High Q
- High Insulation Resistance >1 G-ohm
- Low ESR designs <100 milliohms

Typical Electrical Specifications

Material	MOS (SiO ₂)
pF/mm² Typical	85 @ 50V rated
TCC	±30 ppm/°C
Rated Voltage	≤100
Peak Voltage at +25°C	1.5 x Rated
DF	≤0.1%

Test Methods

Specification	Parameter	Method or Paragraph
MIL-STD-883	Bond Strength	2011.7
MIL-STD-883	Shear Strength	2019
MIL-STD-202	Life	108

How to Order

<u>MS</u>	<u>20</u>
Series Code	Case Size
MS - MOS	Square size in mils 10, 20, 30, 40 OS - special order please

supply design

0	<u>3</u>
se ze	Working Voltage
re size mils	Z = 10 WVDO $3 = 25 WVDO$
30, 40	5 = 50 WVDC
pecial	S - special
please	order

<u>3</u>	<u>S</u>
rking Itage	Dielectri Code
0 WVDC 5 WVDC 0 WVDC special rder	S = SiO ₂ for MOS style

-
EIA capacitance
code in pF
First two digits =
significant figures
or R for decimal place.
Third digit - number of
zeros or after "R"
significant figures.

100

Capacitance

M
Capacitance Tolerance
$J = \pm 5\%$ $K = \pm 10\%$

M

$= \pm 5\%$	1st
$= \pm 10\%$	2nd
$= \pm 20\%$	layer,
	bondi
	Top
	38
	Botte
	93 - T
	00

<u>3/23</u>
Termination
Code

1st position top layer
2nd position top bonding
layer, 3rd position bottom
bonding layer, 4th position
Top layers: 37 = AuTaN
38 - AuTiW, 18 - AITiW
Bottom layers: 23 - CrAu
93 - TiWNiAu, 53 = CrNiAu
OSOS - Special Order
Please Supply Design

W Packaging

W = antistatic waffle pack T= tested whole wafer D - Tested wafer diced on tape

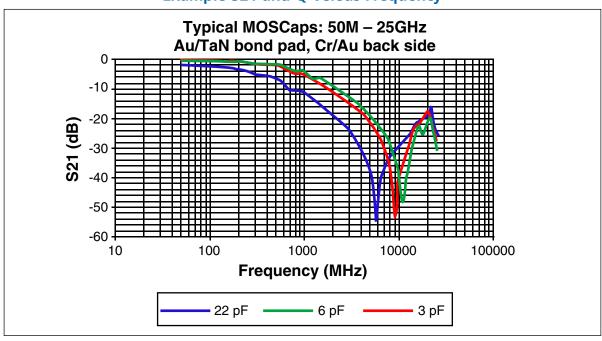
AMERICAN

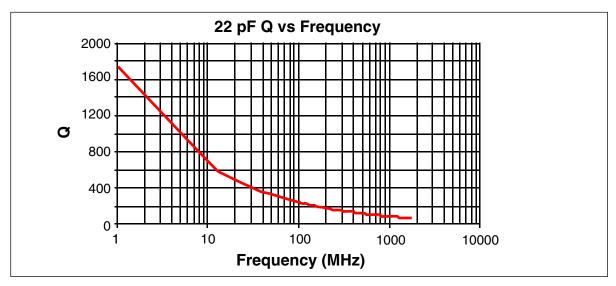
TECHNICAL

CERAMICS

ATC // AVX Thin Film Technologies tfsales@atceramics.com

ATC North America sales@atceramics.com


ENGINEERS'
CHOICE®
ISO 9001 REGISTERED
COMPANY


ATC // AVX MOS Single Layer Capacitors Metal Oxide Semiconductor

Standard Wafers Offered and Thickness

N+ (Arsenic doped); 0.001-0.005 Ohm-cm resistivity; ≥100µm thick N++ (Phosphorous doped): .001 to .0015 Ohm-cm resistivity; ≥100µm thick

Example S21 and Q Versus Frequency

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. A 10/03). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale. ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product line without prior notice.

© 2010 American Technical Ceramics Corp. All Rights Reserved.

ATC # 001-1088 Rev. A; 5/10

AMERICAN

TECHNICAL

CERAMICS

ATC // AVX Thin Film Technologies **ATC North America** tfsales@atceramics.com

sales@atceramics.com

ENGINEERS' CHOICE® ISO 9001 REGISTERED COMPANY

THE ENGINEERS' CHOICE™

www.atceramics.com